iLab Neuromorphic Robotics Toolkit  0.1
Miscellaneous maths utilities and constants

## Modules

Precomputed constants 128 bits IEEE quad

Precomputed constants 256 bits IEEE

## Functions

double nrt::lngamma (double x)
Compute log of Gamma. More...

double nrt::normalPDF (double x, double mu, double var)
Find the value of a normal PDF at x. More...

double nrt::normalCDF (double x, double mu, double var)
Find the value of a normal CDF at x. More...

double nrt::vonMisesPDF (double x, double mu, double k)
Find the value of a von Mises distribution at x. More...

template<class T >
nrt::clamped (T const &val, T const &min, T const &max)
Clamp a value to within a min-max range. More...

## Function Documentation

 double nrt::lngamma ( double x)

Compute log of Gamma.

 double nrt::normalPDF ( double x, double mu, double var )

Find the value of a normal PDF at x.

Parameters
 x The point at which to find the value of the normal PDF mu The mean of the normal distribution var The variance (stddev^2) of the normal distribution
 double nrt::normalCDF ( double x, double mu, double var )

Find the value of a normal CDF at x.

Parameters
 x The point at which to find the value of the normal CDF mu The mean of the normal distribution var The variance (stddev^2) of the normal distribution
 double nrt::vonMisesPDF ( double x, double mu, double k )

Find the value of a von Mises distribution at x.

The von Mises distribution is a continuous probability distribution on a circle, and is a close approximation to a normal distribution which is wrapped between -PI to PI.

Parameters
 x The point at which to find the value of the von Mises PDF mu The 'mean' of the distribution k The 'concentration' of the distribution. As k increases, the von Mises distribution approaches a normal distribution with mean mu, and variance 1/k.
template<class T >
 T nrt::clamped ( T const & val, T const & min, T const & max )
inline

Clamp a value to within a min-max range.

Definition at line 37 of file MathUtilsImpl.H.

Referenced by drawPolygonFill().